Magnetohydrodynamic Effects in Propagating Relativistic Jets: Reverse Shock and Magnetic Acceleration
نویسندگان
چکیده
We solve the Riemann problem for the deceleration of an arbitrarily magnetized relativistic flow injected into a static unmagnetized medium in one dimension. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization σ (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when σ exceeds a critical value, σc, defined by the balance between the magnetic pressure in the flow and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the flow. We discuss the implications of these results for models of gamma-ray bursts and active galactic nuclei.
منابع مشابه
A Magnetohydrodynamic Boost for Relativistic Jets
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V z j ) flowing tangentially to a dense external medium. Magnetic field...
متن کاملRecollimation Shocks in Magnetized Relativistic Jets
We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of nonequilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Al...
متن کاملParticle Acceleration and Magnetic Field Generation in Electron - Positron Relativistic Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associ...
متن کاملParticle acceleration at shocks in relativistic jets
The theory of particle acceleration at shock fronts is briefly reviewed, with special emphasis on the production of the particles responsible for the nonthermal emission from blazars. The flat radio/IR spectra of these sources cannot be produced by diffusive acceleration at a simple nonrelativistic shock front propagating in a homogeneous medium. It can, however, be produced by a single unmodif...
متن کاملWeibel Instability and Associated Strong Fields in a Fully 3d Simulation of a Relativistic Shock
Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagn...
متن کامل